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S~zm~v 

Two acrylate side chain polymers in which the mesogenic moiety is a 4'-cya- 
no-biphenyl-4-yl group have been synthesized and characterized by d.s.c., 
optical microscopy and X-ray diffraction~ If the mesogenic moiety is lln- 
ked to the polymer backbone by a -O-CO-(CHo~ ~ group, the resultant polymer 
is nematic. For a -O~CH~, group, the unusual NS~N sequence is observed. 

�9 . o ~ re  . 
X-ray dlffraetmon has s~own that the S A phase has a partlally bmlayer struc- 
ture : the molecules are arranged in g~ antlparallel, overlapping interdi- 
gitated structure with a layer spacing of about 1.h times the length of 
the side chains. Monolayer fluctuations are also observed in this S A phase. 

Introduction 

Certain liquid crystals with a terminal cyano group exhibit the following 
complex sequence of phase transitions on cooling : isotropic § nematie § 
smectic A § nematie(1-3). The second nematic phase, which occurs at a 
lower temperature than the smectlc phase is called the "re-entrant" nematic 
phase. The highly polar cyano group attached to one end of the molecules 
results in strong antiparallel near-nelghbour correlations. As a consequence, 
the S A phases of these materials often consist of "bilayers", the molecu- 
les arranged in an antiparallel overlapping interdigitated structure with 
a layer spacing of about 1.3 - 1.6 times the molecular length. As the tem- 
perature is varied, the molecular packing is slightly altered and the resul- 
ting subtle changes in the bilayer structure appear to be responsible for 
the occurrence of the reentrant nematic phase. This prompted us to synthe- 
size the polymers of the general structure: 

where n = 2-6 and X = -0-, -CO-O- (4). In the present paper we report on 
the synthesis and characterization of two polymers in which n = 6 and 
X = -0- (P0 6) and n -- 5 and X = -C0-O- (PC0-0 5) respectively. The diffe- 
rent mesomorphic phases were identified both by optical microscopy and 
X-ray diffraction~ 

* To whom offprint requests should be sent 
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Experimental 

The polymerizable monomers were prepared by standard methods as described 
in schemes I and 2. The structures of all compoundsland synthetic interme- 
diates were confirmed by infrared spectroscopy and H n.m.r. (4)~ 

Scheme 1 

Br*~-CH2-~5 COOH ~ Br~CH2-')-6OH LIAtH 4 
H O ~ C N  
KOH, EtOH 

Et3N'THF CH2,, Cl H 

K 71.2"c 

Scheme 2 

Br.~CH2.).~. 5 SOC~2 Br CH o o o .  
\Ct  

Br~ CH2~ 5 C eO 
~'O -=~=--~ C N 

CH2= CH'COOLi~HM PA 

CH2= CH I 
C O 

K 69"5~  l 

N ~ . 5 ~  

CN 

T4he polymers PO 6 and PCO-O 5 were prepared by free radical polymerization 
in solution with the use of azo-bis-isobutyronitrile as initiator at 60~ 
(Table I). Purification was accomplished by two re-precipitations into 
methanol after vhich the polymers were dried in vacuo. 
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Table I - Polymerization of monomers 

Monomer [Monomer ] Reaction 
X n Solvent [AIBN] time (h) Conversion % 

0 6 C6H5CI 152 15 62 

C0-0 5 THF 25 7 63 

Molecular heterogeneities and weight average molecular weights were deter- 
mined by G.P.C. using universal calibration (Table II) 

Table II - Properties of polymers 

Polymer M-w Mw/M n Transition Temperature (~ 

Tg Nre SAd N 

PO 6 62,000 3~ ,32 .80 ,124.5 .132 

PCO-O 5 7,300 1.3 .30 .115 

Thermal transitions in polymers were measured by means of a differential 
thermal analyser Du Pont 1090. 

The transition characteristics were surveyed with a polarizing microscope 
(Olympus BHA-P) equipped with a Mettler FP5 hot stage~ 

X-ray diffraction patterns were recorded on flat films using Ni-filtered 
CuK radiation. The samples were contained in I mm Lindemann glass tubes 
whicah were mounted in an electrically heated oven, the temperature of 
which was controlled within 0.2 K using a platinum resistor as sensing 
element. Well oriented samples of PO 6 and PCO-O 5 were produced by dra- 
wing fibres out of the mesophase with a pair of tweezers. 

Results and Discussion 

The synthesized polymers are essentially non crystalline in character, Their 
transition temperatures are listed in Table II. Polarized light photomi- 
crograph depicting the appearance of the mesophase of polymer PCO-O 5 show 
readily identifiable nematic threaded texture (Figure I )o The X-ray patterns 
obtained with unoriented samples in a temperature range 30-115~ are con- 
sistent with a nematic structure. At large diffraction angles they present 
a diffuse, broad ring which is related to the lateral interferences bet- 
ween the mesogenic cores and points out the lack of lateral periodic order. 
It corresponds to an average intermolecular spacing of approximately 
4.3-4.4 ~ . A second diffuse ring is seen at small angles. It corresponds 
to a distance of about 13 ~, which is approximately half the length of the 
side chains in their most extended conformation. The anisotropy shown in the 
X-ray patterns of stretching-oriented fibres clearly demonstrates the nema- 
tic structure of the mesophase. The outer ring is split into two crescents 
symmetrical about the equatorial plane which is perpendicular to the stret- 
ching direction : the mesogenic moieties are parallel tc the fibre axis~ At 
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Figure I - Threaded texture of polymer CO-O 5 (crossed polarizers) 

low angles, along the meridian line one can see diffuse lines whose perio- 
dicity corresponds to the length of the side chains~ 

On cooling from the isotropic state, the high-temperature mesophase of 
polymer PO 6 appears at 130~ as a Schli~ren texture (Figure 2). From the 
observation of disclinations of strength - I/2 this mesophase can be unam- 
biguously identified as a nematic phase (5). Further reduction in tempera- 
ture produces at about 123-122~ a striated or myelinic texture with typi- 
cal transition bars (Figure 3). Such a texture generally appears in the 
temperature range immediately below N/S A or N/S C transition (5). This texture 
changes on standing for some time into ~he stable simple focal conic and 
fan-shaped textures (Figure 4) which are consistent ~ith a S phase. There 
is also some indication that polymer PO 6 forms a re-entran@ nematic 
phase upon cooling from the S A state : below 78~ either a Schlieren tex- 
ture is progressively restore~ or a paramorphic fan shaped texture is for- 
med (Figure 5). Recently, Kostromin et alo (6) reported for this polymer 
the same sequence of phase transitions : nematic § smectic A § re-entrant 
nematic. 

Both nematic and smectic A phases give at large diffraction angles a diffuse 
ring which arises essentially from the intermolecular spacings perpendicu- 
lar to the long axes of the side chains. The average intermolecular spacing 
varies from 4.6 ~ at 120~ to 4.25 ~ at room temperature which is consis- 
tent with most results reported so far. 

At small diffraction angles the X-ray patterns of nematic and smectic A pha- 
ses differ in their aspect. X-ray patterns of smectic A phase are characte- 
rized by a sharp ring an~ a weak second order reflection corresponding to a 
layer thickness of 33.6 A, which is considerably in excess of the ~ength 
of the side chains in their most extended conformation (L ~ 24-25 A). Thus, 
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Figure 2 - Photomicrograph of high-temperature nematic phase from polymer 
P0 6 (crossed polarizers). 

Figure 3 - The transition Nematic/Smectic A. (crossed polarizers)~ 
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Figure 4 - Photomicrograph of smectic A phase from polymer PO 6 
(crossed polarizers) �9 

Figure 5 -Photomicrograph of re-entrant nematic phase from polymer PO 6 
(crossed polarizers). 
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as observed for certain low molar mass cyano derivatives which exhibit SAd 
phases (7-9) some form of bilayer structure is implied, in which the 
molecules are partially overlapped. In addition, a diffuse ring can also 
be seen. It corresponds to a distance of 12o5 A, which is approximately half 
the length of the side chains. This diffuse ring is related to local monola- 
yer fluctuations away from the mean smectic organization. The variation of the 
modulation wave vectors as a function of temperature is sho~n in Figure 6o 
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Figure 6 - Thermal evolution of the modulation wavevectors in polymer P0 6. 
( .... diffuse rings) 

In the temperature range 80-60~ the X-ray patterns of re-ent~ant nematic 
are characterized by two diffuse rings at 33-34 A and 12-12.6 A, respecti- 
velyo Therefore partially bilayer and monolayer fluctuations are present 
simultaneously. Below 60~ however, only monolayer fluctuations remain~ 

Dielectric studies on the same polymer have shown that the activation 
energy for the flip-flop rotation of the side chains is higher for the nema- 
tic phases than for the S A phase (10). Moreover, the activation energy turns 
out to be much higher for-the re-entrant nematic than for the normal nematic, 
proving that the molecular associations in these two phases are signifi- 
cautly different. It is to be noted that a somewhat Similar type of behavior 
has been reported for some low molar mass compounds with a terminal cyano 
group that exhibit re-entrant nematlc phase (11, 12)o 
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